เซต
( Set )
เซต (อังกฤษ: set) ในทางคณิตศาสตร์นั้น
อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด
แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่
การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง
มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ
ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้
A เป็นเซตซึ่งสมาชิกของมันเป็น
เลขจำนวนเต็มบวกสี่ตัวแรก
B เป็นเซตของสีของ ธงชาติฝรั่งเศส
วิธีที่สองคือโดย การแจกแจงนั่นคือ
การแจกแจกสมาชิกแต่ละตัวของเซต การนิยามเซตด้วยการแจกแจงสมาชิกถูกเขียนแทนด้วยการแจกแจงสมาชิกของเซตภายใน วงเล็บปีกกา:
C = {4, 2, 1, 3}
D = {blue, white, red}
ลำดับที่สมาชิกของเซตถูกเรียงในการนิยามแบบแจกแจกสมาชิกไม่มีความสำคัญ
เช่นเดียวกันกับจำนวนสมาชิกที่ซ้ำกันในรายการแจกแจง ตัวอย่างเช่น
{6,
11} = {11, 6} = {11, 11, 6, 11}
เป็นเซตที่เหมือนกันทุกประการ
เพราะว่าการแจกแจงสมาชิกเซตมีความหมายเพียงว่าองค์ประกอบแต่ละตัวในรายการแจกแจงเป็นสมาชิกตัวหนึ่งของเซตนั้นแค่นั้นเอง
สำหรับเซตที่มีสมาชิกจำนวนมาก
การระบุของสมาชิกสามารถเขียนอย่างย่อได้ ตัวอย่างเช่น
เซตของเลขจำนวนเต็มบวกหนึ่งพันตัวแรกสามารถเขียนแบบแจกแจงได้เป็น:
{1,
2, 3, ..., 1000},
ที่ซึ่ง การเว้นถ้อยคำไว้ให้เข้าใจเอาเอง (อิลิปซิส, "...") ระบุว่ารายการแจกแจงดำเนินต่อไปในทางที่เห็นได้ชัด
อิลิปซิสอาจถูกใช้ในที่ซึ่งเซตมีสมาชิกไม่จำกัด ดังเช่น เซตของ เลขจำนวนเต็มคู่บวก
เขียนแทนได้ว่า {2, 4, 6, 8, ... }
เราอาจใช้เครื่องหมายปีกการะบุเซตด้วยการนิยามได้ ในการใช้นี้
ปีกกามีความหมายว่า "เซตของ ...ทั้งหมด" ดังนั้น E = {playing-card suits} คือเซตซึ่งสมาชิกสี่ตัวของมันคือ
♠, ♦, ♥, และ ♣ รูปแบบทั่วไปของมันคือ การใช้เครื่องหมายตัวสร้างเซต ตัวอย่างเช่น
เซตF ของเลขจำนวนเต็มที่น้อยที่สุดยึ่สิบตัวซึ่งยกกำลังสองแล้วหักออกด้วยสี่สามารถเขียนได้เป็น:
F = {
- 4 : n เป็นเลขจำนวนเต็ม; และ 0 ≤ n ≤ 19}

ในการนิยามนี้ เครื่องหมาย โคลอน (":") หมายถึง
"โดยที่" และ การเขียนให้รายละเอียดสามารตีความได้ว่า "เซตF เป็นเซตของเลขทั้งหมดของนิพจน์
- 4, โดยที่ n เป็นเลขจำนวนเต็มตั้งแต่ 0 ถึง 19" บางครั้ง เส้นตรงแนวดิ่ง ("|") ถูกใช้แทนโคลอน
(":")

บ่อยครั้งที่พวกเราต้องเลือกระบุเซตแบบนิยามหรือแบบแจกแจง
ในตัวอย่างข้างต้น จะเห็นว่า A = C และ B = D
การดำเนินการเซต
การดำเนินการเซต
1. ยูเนียน ของ A และ B
คือเซตที่เกิดจากการรวบรวมสมาชิกของ A และ B
เข้าไว้ด้วยกัน
2. อินเตอร์เซกชัน ของ A และ B คือเซตที่ประกอบด้วยสมาชิกที่เหมือนกันของ
A และ B
3. ผลต่าง A – B คือเซตที่ประกอบด้วยสมาชิกของ A ที่ไม่ใช่สมาชิกของ B
4. คอมพลีเมนต์ ของ A เขียนแทนด้วย A’ คือสับเซตของ U
ที่ประกอบด้วยสมาชิกที่ไม่อยู่ ใน A